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Abstract 

Background:  Covid-19 morbidity and mortality are associated with a dysregulated immune response. Tools are 
needed to enhance existing immune profiling capabilities in affected patients. Here we aimed to develop an 
approach to support the design of targeted blood transcriptome panels for profiling the immune response to SARS-
CoV-2 infection.

Methods:  We designed a pool of candidates based on a pre-existing and well-characterized repertoire of blood 
transcriptional modules. Available Covid-19 blood transcriptome data was also used to guide this process. Further 
selection steps relied on expert curation. Additionally, we developed several custom web applications to support the 
evaluation of candidates.

Results:  As a proof of principle, we designed three targeted blood transcript panels, each with a different transla‑
tional connotation: immunological relevance, therapeutic development relevance and SARS biology relevance.

Conclusion:  Altogether the work presented here may contribute to the future expansion of immune profiling capa‑
bilities via targeted profiling of blood transcript abundance in Covid-19 patients.
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Background
Covid-19 is an infectious, respiratory disease caused 
by a newly discovered coronavirus: SARS-CoV-2. The 
course of infection vary widely, with most patients pre-
senting mild symptoms. However, about 20% of patients 
develop severe disease and require hospitalization [1, 2]. 
The interaction between innate and adaptive immunity 

can lead to the development of neutralizing antibod-
ies against SARS-CoV-2 antigens that might be associ-
ated with viral clearance and protection [3]. But immune 
factors are also believed to play an important role in the 
rapid clinical deterioration observed in some Covid-19 
patients [4]. There is thus a need to develop new modali-
ties that can improve the delineation of “immune trajec-
tories” during SARS-CoV-2 infection.

Blood transcriptome profiling involves measur-
ing the abundance of circulating leukocyte RNA on a 
genome-wide scale via RNA sequencing [5]. Processing 
of the samples and the raw sequencing data however, is 
time consuming and requires access to sophisticated 
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laboratory and computational infrastructure. Thus, the 
possibility of implementing this approach on large scales 
to ensure immediate translational potential is limited. 
Such unbiased omics profiling data might rather be lever-
aged to inform the development of more practical, scal-
able and targeted transcriptional profiling assays. These 
assays could in turn serve to significantly bolster existing 
immune profiling capacity.

Fixed sets of transcripts grouped based on co-expres-
sion observed in large collections of reference datasets 
provide a robust platform for transcriptional profiling 
data analyses [6]. Here we leveraged a repertoire of 382 
transcriptional modules previously developed by our 
team [7]. The repertoire is based on a collection of ref-
erence patient cohorts encompassing 16 pathological or 
physiological states and 985 individual transcriptome 
profiles. In this proof of principle study, we used the 
available transcript profiling data from two separate 
studies to select Covid-19 relevant sets of modules [8, 
9]. Next, we applied filters based on pre-specified selec-
tion criteria (e.g. immunologic relevance or therapeutic 
relevance). Finally, expert curation was used as the last 
selection step. For this we have developed custom web 
applications to consolidate the information necessary for 
the evaluation of candidates. One of these applications 
provides access to module-level transcript abundance 
profiles for available Covid-19 blood transcriptome pro-
filing datasets. Another web interface was implemented 
which serves as a scaffold for the juxtaposition of such 
transcriptional profiling data with extensive functional 
annotations.

Methods
Datasets
Two Covid-19 blood transcriptional datasets available at 
the time this work was conducted were used: (1) Xiong 
et  al. [9] obtained peripheral mononuclear cell samples 
obtained from one uninfected control individual and 
three patients with Covid-19. RNA abundance was pro-
filed via RNAseq. The data were deposited in the Genome 
Sequence Archive of the Beijing Institute of Genomics, 
Chinese Academy of Sciences, under the accession num-
ber CRA002390. FASTQ files were downloaded from this 
repository. Following QC reads were aligned to refer-
ence genome GRCh38/hg19 using Hisat2 (v2.05). BAM 
files were converted to a raw count expression matrix 
using subreads (v1.6.2). Raw expression data was cor-
rected for within lane and between lane effects using R 
package EDASeq (v2.12.0) and quantile normalized using 
preprocessCore (v1.36.0). The modular analysis was 
performed by using 10,617 RNA-seq genes which over-
lapped with transcripts from the 3rd generation module 

construction [7]. Details of the analysis as described 
below section.

(2) Ong et  al. [8] collected whole blood stabilized in 
RNA buffer from uninfected controls and three Covid-
19 patients at multiple time points. RNA abundance 
was profiled using a standard immunology panel from 
Nanostring comprising 594 transcripts. The data were 
deposited in the arrayexpress public repository with 
accession ID E-MTAB-8871. The normalized data were 
downloaded, and modular analysis was performed by 
using 403 NanoString genes which overlapped with tran-
scripts from the 3nd generation module construction 
details of the analysis as described below section.

We used in addition a reference dataset generated by 
our group that was previously used for the construction 
of the 382 blood transcriptional module repertoire. This 
repertoire served in turn as the basis for the selection/
development of targeted Covid-19 blood transcript pan-
els described in the present article [7]. Briefly, this rep-
ertoire consists of the following cohorts of patients and 
respective control subjects: S. aureus infection (99 cases, 
44 controls), sepsis (35 cases, 12 controls), tuberculosis 
(23 cases, 11 controls), Influenza (25 cases, 14 controls), 
RSV infection (70 cases, 14 controls), HIV infection (28 
cases, 35 controls), systemic lupus erythematosus (55 
cases, 14 controls), multiple sclerosis (34 cases, 22 con-
trols), juvenile dermatomyositis (40 cases, 9 controls), 
Kawasaki disease (21 cases, 23 controls), systemic onset 
idiopathic arthritis (62 cases, 23 controls), COPD (19 
cases, 24 controls), melanoma (22 cases, 5 controls), 
pregnancy (25 cases, 20 controls), liver transplant recipi-
ents (94 cases, 30 controls), and B cell deficiency (20 
cases, 13 controls). All samples were run at the same 
facility on Illumina HumanHT-12 v3.0 Gene Expression 
BeadChips. The data have been deposited in NCBI Gene 
Expression Omnibus (GEO) with accession number 
GSE100150.

Transcriptional module repertoire
The method used to construct the transcriptional mod-
ule repertoire has been described elsewhere [10, 11]. 
The version used here is the third and last to have been 
developed by our group over a period of 12 years. It is the 
object of a separate publication (available on a pre-print 
server [7]).

Briefly, the approach consists of identifying sets of 
co-expressed transcripts in a wide range of pathologi-
cal or physiological states, focusing in this case on the 
blood transcriptome as the biological system. We deter-
mined co-expression based on patterns of co-clustering 
observed for all gene pairs across the collection of 16 
reference datasets listed in the previous section and that 
encompassed viral and bacterial infectious diseases as 
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well as several inflammatory or autoimmune diseases, 
B-cell deficiency, liver transplantation, stage IV mela-
noma and pregnancy. Overall, this collection comprised 
985 blood transcriptome profiles. A weighted, co-expres-
sion network was built with the weight of the nodes con-
necting a gene pair being based on the number of times 
co-clustering was observed for the pair among the 16 ref-
erence datasets. Thus, the weights ranged from 1 (where 
co-clustering occurs in one of 16 datasets) to 16 (where 
co-clustering occurs in all 16 datasets). Next, this net-
work was mined using a graph theory algorithm to define 
subsets of densely connected gene sets that constituted 
our module repertoire (“Cliques” and “Paracliques”).

Overall, 382 transcriptional modules were identified, 
encompassing 14,168 transcripts. A supplemental file 
including the definition of this module repertoire along 
with the functional annotations is made available here 
(Additional file  3). To provide another level of granu-
larity and facilitate data interpretation, a second round 
of clustering was performed to group the modules into 
“aggregates”. This process was achieved by grouping the 
set of 382 modules according to the patterns of transcript 
abundance across the 16 reference datasets that were 
used for module construction. This segregation resulted 
in the formation of 38 aggregates, each comprising 
between one and 42 modules.

Module repertoire analyses
The modular analyses were performed using the core 
set of 14,168 transcripts forming the module repertoire. 
For group-level comparisons (cases vs controls), a paired 
t-test was performed on the log2-transformed data [Fold 
change (FC) cut off = 1.5; FDR cut off = 0.1]. For indi-
vidual-level comparisons, each sample was compared 
to the mean value of the corresponding control samples 
(or individual sample in the case of the Xiong et al. data-
set). The cut off comprised an absolute FC > 1.5 and a dif-
ference in counts > 10. The results for each module are 
reported as the percentage of its constitutive transcripts 
that increased or decreased in abundance. Group-level 
comparisons were performed on the reference datasets 
(collection of 16 datasets from Altman et al.). Individual-
level comparisons were performed on both Covid-19 
datasets. Because the genes comprised in a module are 
selected based on the co-expression observed in blood, 
the changes in abundance within a given module tend 
to be coordinated and the dominant trend is therefore 
selected (the greater value of the percentage increased 
vs. percentage decreased). Thus, the values range from 
-100% (all constitutive modules are decreased) to +100% 
(all constitutive modules are increased). A module was 
considered to be “responsive” when the proportion of 
transcripts found to be increased was > 15% (induced), or 

when the proportion of transcripts found to be decreased 
was ≤ 15% (repressed). At the aggregate-level, the per-
cent values of the constitutive modules were averaged. 
Module aggregates showing little changes in Covid-19 
patients were filtered out from the selection process. 
This was based on the proportion of modules for a given 
aggregate showing changes for all three subjects from the 
Xiong et al. dataset. The cutoff was set at 15%. In total of 
17 out of the 38 module aggregates exceeded this cutoff 
and were thus retained for downstream analyses. They 
are listed in Table 1.

Data visualization
Changes in transcript abundance reduced at the module 
or module aggregate-level were visualized using a custom 
fingerprint heatmap format. For each module, the per-
centage of increased transcripts is represented by a red 
spot and the percentage of decreased transcripts is rep-
resented by a blue spot. The fingerprint grid plots were 
generated using “ComplexHeatmap” [12]. A web appli-
cation was developed to generate the plots and browse 
modules and module aggregates (https​://drinc​hai.shiny​
apps.io/COVID​_19_proje​ct/). A detailed description and 
source code will be available as part of a separate pub-
lication BioRxiv deposition on GitHub and BioRxiv (in 
preparation).

Selection of transcripts for inclusion in targeted panels
Therapeutic relevance
Covid-19 module sets belonging to aggregates com-
prising module annotations relating to inflammation, 
monocytes, neutrophils or coagulation pathway were 
selected for screening (A7, A8, A26, A31, A33, A34, 
A35). In turn, transcripts from each of the correspond-
ing module sets were selected on the basis of their sta-
tus as a known therapeutic target of a drug for which 
clinical precedence exists (source: targetvalidation.
org). Next, candidates were prioritized via expert cura-
tion on the basis of compatibility and a potential ben-
efit as a Covid-19 treatment. Curators selected for this 
task were medical degree holders. They were provided 
with reports from the Open Targets website [13]. These 
reports included transcripts within a given module set 
which products were identified as being targetable by 
existing drugs (with tractability information indicat-
ing “with clinical precedence”; e.g. for Module M16.64 
A31/S1: https​://bit.ly/3dLin​5P). Based on this informa-
tion, their medical knowledge, and review of the rel-
evant literature curators identified among candidates 
targeted by drugs those that would be most likely to be 
considered for treatment of Covid-19 patients. When 
multiple such candidates were identified a ranking 

https://drinchai.shinyapps.io/COVID_19_project/
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was given based on feasibility and perceived potential 
clinical benefit. Only the top ranked candidate from 
each set was selected for inclusion in the panel. Mod-
ule sets from aggregate A28 (interferon response) may 
also be of clinical relevance, as indicators of a treat-
ment response since interferon administration has 
been shown to increase the activity of anti-viral drugs 
in Covid-19 patients [14]. The selection of candidates 
for aggregate A28 sets was thus based on the ampli-
tude of the response to beta-interferon therapy meas-
ured in patients with multiple sclerosis [fold-change 
over pre-treatment baseline [15] & NCBI GEO acces-
sion GSE26104]. The remaining nine aggregates, which 
tended to associate preferentially with adaptive immune 
responses and for which targeting by therapies might 
prove detrimental, were not included in this screen. For 
these, representative transcripts from the default panel 
of immune relevant transcripts were included.

Relevance to Coronavirus biology
For the second panel, transcripts were primarily selected 
based on their relevance to SARS (Severe Acute Respira-
tory Syndrome) biology. As a first step, a literature pro-
filing tool was used to identify among the SARS, MERS 
(Middle East Respiratory Syndrome), or Covid-19 litera-
ture articles that were associated with transcripts form-
ing the 28 Covid-19 module sets [Literature Lab (LitLab) 
by Acumenta Biotech [16] and LitLab Gene Retriever 
application, Accumenta Biotech, Boston, MA]. Next, the 
potential associations were assessed by manual curation. 
The curators prioritized the transcripts for which the 
associations could be confirmed based on importance 
and robustness.

Immunological relevance
Lists of immunologically relevant genes were retrieved 
from Immport, the NIAID Immunology Database 
and Analysis Portal [17], and were used along with 

Table 1  List of Covid-19 relevant aggregates and module sets

Module 
aggregate

Module Set Modules Functional annotations

A1 A1/S1 M14.42, M15.38, M12.6, M13.27, T cells

A1/S2 M14.23, M15.87, M14.5, M14.49, M12.1, M14.20 Gene transcription

A1/S3 M12.8, M15.29, M14.58, M15.51, M14.64, M16.78, M14.75, M15.82, M14.80 B cells

A2 A2/S1 M13.21, M9.1 Cytotoxic lymphocytes

A2/S2 M14.13, M14.72, M13.13, M13.14, M14.45, M13.10, M15.91 TBD

A4 A4/S1 M16.69, M16.72, M16.50, M16.77 Antigen presentation,

A5 A5/S1 M16.95, M16.36 B cells

A5/S2 M16.57, M16.18, M16.65, M16.111, M16.99 B cells

A7 A7/S1 M15.61 Monocytes

A8 A8/S1 M16.30 Complement

A8/S2 M16.106 TBD

A10 A10/S1 M15.102 Prostanoids

A26 A26/S1 M12.2 Monocytes

A27 A27/S1 M13.32, M12.15, M16.92, M15.110, M16.60 Antibody producing cells

A28 A28/S1 M15.127, M8.3 Interferon response

A28/S2 M15.64 Interferon response

A28/S3 M15.86, M10.1, M13.17 Interferon response

A31 A31/S1 M14.81, M16.64 Platelet/Prostaglandin

A31/S2 M14.48, M14.38, M15.58 Monocytes

A33 A33/S1 M15.104, M14.82, M14.24, M15.108 Cytokines/chemokines, Inflammation

A33/S2 M14.19, M14.76, M14.50, M14.26, M16.101, M16.100, M16.80 Inflammation

A34 A34/S1 M14.39, M14.59, M10.3, M16.109, M8.2 Platelets, prostanoids

A35 A35/S1 M14.65, M14.28, M15.81, M16.79, M13.3, M14.7, Monocytes, neutrophils

A35/S2 M15.26, M12.10, M13.22, M15.109, M15.78, M13.16, Neutrophils, inflammation

A36 A36/S1 M16.34, M16.82, M15.97, M14.51, M15.118, M16.88 Gene transcription

A37 A37/S1 M9.2, M14.53, M11.3, M12.11, M15.100 M15.74, M13.26, M13.30, M15.53, Erythroid cells

A38 A38/S1 M10.4 Neutrophil activation

A38/S2 M16.96, M12.9, M14.68 Erythroid cells
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membership to IPA pathways (Ingenuity Pathway Analy-
sis, QIAGEN, Germantown MD) to annotate transcripts 
comprising Covid-19 module sets. The curators prior-
itized annotated transcripts on the basis of their rel-
evance to the functional annotations of the module set 
(e.g. if the main annotation for the modules for a given 
set is “cytotoxic cells”, markers for NK cells would be 
preferentially over a cytokine that is better characterized 
but is unrelated to cytotoxic functions). The transcript 
with the highest priority rank was included in the assay.

Housekeeping genes
A recommended set of housekeeping genes is provided in 
Table 2. These were selected on the basis of low variance 
observed across the 985 transcriptome profiles generated 
for our reference cohorts.

Annotation framework
Links to the resources described in this section and to 
video demonstrations are available in Table 3. Interactive 
presentations were created via the Prezi web application. 
For this we have built and expanded upon an annotation 
framework established as part of the characterization of 
our reference blood transcriptome repertoire [7]. Several 
bioinformatic resources were used to populate interac-
tive presentations that served as a framework for anno-
tation of Covid-19 relevant module sets. These resources 
include web applications deployed using Shiny R, which 
permit to plot transcript abundance patterns at the mod-
ule and aggregate levels. Two of these applications were 
developed as part of a previous work establishing the 
blood transcriptome repertoire and applying it in the 
context of a meta-analysis of six public RSV datasets [18]. 
As described above, a third application was developed as 
part of this work and can generate profiles at the tran-
script, module and module-aggregate levels for the Xiong 
et al. and Ong et al. datasets.

Results
Mapping Covid‑19 blood transcriptome signatures 
against a pre‑existing reference set of transcriptional 
modules
Changes in blood transcript abundance in response to 
SARS-CoV-2 infection have thus far been reported in 
two different studies. Different platforms, methodologies 
and designs were employed. Also, we first used a refer-
ence sets of signatures as a common framework in order 
to compare changes in transcript abundance measured in 
each study.

We employed a pre-established repertoire of 382 tran-
scriptional modules (Fig. 1a) to map changes observed in 
Covid-19 patients. This module framework is described 
in details in “Methods” section and in a separate publica-
tion [7]. The Covid-19 datasets that we used for this were 
contributed by Xiong et al. [9] (one control and three sub-
jects) and Ong et al. [8] (nine controls and three subjects 
profiled at multiple time points). Their data were gener-
ated using RNA-seq and Nanostring technology, respec-
tively. The generic 594 transcript panel used by Ong et al. 
did not give sufficient coverage across the 382-module 
set. We thus mapped the transcript changes at a lower 
resolution, using 38 module “aggregates“(Fig.  2). These 
38 aggregates encompass the entire 382 module set and 
constitute a more reduced version of this repertoire [see 
“Methods” section and [7]. In general, we saw a decrease 
in aggregates associated with lymphocytic compartments 
(aggregates A1 & A5) and an increase in aggregates 
associated with myeloid compartments and inflamma-
tion (aggregates A33 & A35). As expected, we also saw 
increases over uninfected controls for the module aggre-
gate associated with interferon (IFN) responses (A28) 
and the module aggregate presumably associated with 
the effector humoral response (A27). We detected a wide 
spread of values for aggregate A11 for the Nanostring 
(Ong et  al.) dataset. However, this aggregate comprises 
only one module, with only two of its transcripts meas-
ured in this Nanostring code set (the probe coverage 

Table 2  List of housekeeping genes that may be suitable for blood transcript profiling applications

Housekeeping Genes NCBI
Entrez ID

Symbol Name

Housekeeping Gene 1794 DOCK2 Dedicator of cytokinesis 2

Housekeeping Gene 1915 EEF1A1 Eukaryotic translation elongation factor 1 alpha 1

Housekeeping Gene 90268 FAM105B/OTULIN OTU deubiquitinase with linear linkage specificity

Housekeeping Gene 2512 FTL Ferritin light chain

Housekeeping Gene 103910 MYL12B/MRLC2 Myosin light chain 12B

Housekeeping Gene 4637 MYL6 Myosin light chain 6

Housekeeping Gene 6204 RPS10 Ribosomal protein S10

Housekeeping Gene 6230 RPS25 Ribosomal protein S25
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across module aggregates is shown in Additional file  1 
Fig. S1).

Despite large differences between the two studies in 
terms of design, range of clinical severity, technology 
platforms and module coverage, the combined overall 
changes (detected at a high-level perspective) are consist-
ent with those observed in known acute infections, such 
as those caused by influenza, respiratory syncytial virus 
(RSV) or S. aureus. This consistency is evidenced by the 
patterns of change observed for the reference fingerprints 
shown alongside those of Covid-19 patients (Fig. 2).

This analysis provides a high-level mapping of changes 
associated with SARS-CoV-2 infection in two independ-
ent studies. It revealed a significant degree of inter-indi-
vidual variability among Covid-19 patients. In one of the 
studies dynamic changes were also observed for the same 
individuals at multiple time points. Overall the analysis 
results show that changes in abundance of blood tran-
scripts can be measured during the course of Covid-19 
disease. It also serves to highlight the need for transcript 
profiling analyses to be carried out in large number of 
patients and at high temporal frequencies.

Selection of aggregates and identification of coherent sets 
of Covid‑19‑relevant modules
The pre-established repertoire of 382 transcriptional 
modules that we have employed here covers 14,168 tran-
scripts. It is based on co-expression patterns observed 
across a wide range of immune states (Fig.  1a). Also, 
only a fraction of the modules constituting this rep-
ertoire are expected to be of relevance for monitoring 
changes in transcript abundance in Covid-19 patients 
(as shown in Fig. 2). Thus, in the next step we selected a 
subset of Covid-19 relevant module aggregates (Fig. 1b). 
This was achieved by filtering aggregates for which sel-
dom changes were observed among patients profiled 
via RNAseq by Xiong et  al. (see “Methods” for details). 
As a result, 17 of the 38 module aggregates forming the 

repertoire were retained for further analysis and target 
selection (Table 1).

However, patterns of changes in transcript abun-
dance for modules comprised in a given aggregate are 
not always homogeneous. Thus, a further step consist in 
identifying sets of modules within each of the 17 aggre-
gate that display coherent abundance patterns (Fig.  1c). 
To achieve this, we first mapped the changes in transcript 
abundance associated with Covid-19 disease using the 
RNAseq dataset from Xiong et al., as illustrated for A31 
(Fig.  3a) and A28 (Fig.  4a). Similar plots can be gener-
ated for all other aggregates using the “COVID-19” web 
application (links listed in Table 3 and output provided in 
Additional file 2). 

Next, we identified and assigned a module set ID for 
each the modules that formed homogeneous clusters. For 
example, we designated the first A28 set as A28/S1. Such 
module grouping is only based on patterns of transcript 
abundance observed in three Covid-19 patients; however, 
the groupings were often consistent with those observed 
for the much larger reference cohorts that constitute the 
module repertoire (Fig.  3b and Fig.  4b). A28/S1, which 
is formed by M8.3 and M15.127, serves as a good exam-
ple of this consistency (Fig.  4b). Likewise, the segrega-
tion of the modules forming A31 based on differences 
observed in the three Covid-19 patients was also appar-
ent in the reference patient cohorts (Fig. 3b). Specifically, 
an increase in A31/S1 modules, which accompanied a 
decrease in A31/S2 modules, in these three patients was 
also characteristic of RSV patients.

We ultimately derived 28 homogeneous Covid-19 rel-
evant module sets from the 17 aggregates selected in the 
earlier step (Table 1). These sets were used as a basis for 
further selection.

Design of a preliminary targeted panel emphasizing 
immunological relevance
In the previous step, we used available Covid-19 data 
to guide the selection of 28 distinct “Covid-19 relevant 

Fig. 1  Design of targeted blood transcript panels for Covid-19 disease immune profiling. The first selection steps are data-driven (a–c). They 
consist in identifying co-expressed sets of transcripts to constitute “selection pools”. The last selection step is knowledge-driven (d). It consists in 
identifying transcripts among each of the selection pools which are functionally relevant for Covid-19 disease (e.g. potential therapeutic targets, 
molecules involved in viral entry and replication, immunological markers). a Pre-determined module repertoire. The process primarily relies on a 
generic collection of co-expressed gene sets (transcriptional modules) that were developed using an approach described in Altman et al. [7] and 
in the methods section. Two dimension reduction levels are built into this modular repertoire. The least reduced level has 382 variables (modules). 
The most reduced level has 38 variables (module aggregates, which comprise the 382 modules). b Selection of module aggregates. Analysis of 
Covid-19 patient profiles is the basis for a first down-selection step from 38 to 17 module aggregates. c Delineation of homogeneous Covid-19 
module sets. The next step identifies within each of the 17 aggregates subsets of modules that show high degree of expression similarity across 
Covid-19 patients. d Candidate transcript selection. The last step involves expert curation and consists in identifying at least one transcript within 
each module set. Criteria for selection can be adapted based on needs (e.g. enrichment in candidates that are immune relevant and/or potential 
therapeutic targets and/or of relevance to SARS biology)

(See figure on next page.)
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Fig. 2  Mapping Covid-19 blood transcriptome signatures at the module aggregate level. The columns on this heatmap represent samples 
(Xiong et al. and Ong et al.) or patient cohorts (Altman et al.). Module aggregates (A1–A38) are arranged as rows. The colored spots represent the 
proportion of transcripts comprising each transcriptional module aggregate found to be differentially expressed compared to control samples. The 
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immune panel from Nanostring. Patterns are also shown for cohorts comprised in the Altman et al. dataset [7]. The colored labels (right) indicate 
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module sets”. In the next step, we selected the transcripts 
within each module set that warranted inclusion in one 
of three preliminary Covid-19 targeted panels. A first 

panel was formed using immunologic relevance as the 
primary criterion, a second was formed on the basis of 
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Fig. 3  Delineation of sets of Covid-19 relevant A31 modules. a Transcript abundance profiles of A31 modules in Covid-19 patients. This heatmap 
represents the abundance levels for transcripts forming modules belonging to aggregate A31 (rows), across three Covid-19 patients (P1–P3) relative 
to one uninfected control subject (columns). The data are expressed as the proportion of constitutive transcripts in each module being significantly 
increased (red circles) or decreased (blue circles). b Transcript abundance profiles of A31 modules in reference disease cohorts. The top heatmap 
represents the abundance levels for transcripts forming modules belonging to aggregate A31 (rows), across 16 reference patient cohorts (columns). 
The bottom heatmaps represent the changes in abundance across the individuals comprised in two relevant patient cohorts, including pediatric 
patients with severe influenza or RSV infection and adult patients with sepsis
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relevance to coronavirus biology, a third was constituted 
on the basis of relevance to therapy.

For the first panel we matched transcripts comprised 
in each module set to a list of canonical immune genes 
(see “Methods” for details). Expert curation also involved 
accessing transcript profiling data from the reference 
datasets, indicating for instance leukocyte restriction or 
patterns of response to a wide range of immune stimuli 
in vitro. We describe our approach for module and gene 
annotation in more detail below and provide access to 
our resources to support expert curation (Table 3).

For our illustrative case, we selected one representative 
transcript per module set to produce a panel comprised 
of 28 representative transcripts (Table  4). Examples of 
signatures surveyed by such a panel include: (1) ISG15 
in A28/S1 (interferon responses), which encodes for 
a member of the ubiquitin family. ISG15 plays a cen-
tral role in the host defense to viral infections [19]. (2) 
GATA1 in A37/S1 (erythroid cells), which encodes for a 

master regulator of erythropoiesis [20]. It is associated 
with a module signature (A37) that we recently reported 
as being associated with immunosuppressive states, such 
as late stage cancer and maintenance immunosuppressive 
therapy in solid organ transplant recipients [18]. In the 
same report we also found an association between this 
signature and heightened severity in patients with RSV 
infection and established a putative link with a popula-
tion of immunosuppressive circulating erythroid cells 
[21]. (3) CD38 in A27/S1 (cell cycle), which encodes 
for the CD38 molecule expressed on different circulat-
ing leukocyte populations. In whole blood we find the 
abundance of its transcript correlate with that of IGJ, 
TNFRSF17 (BCMA), TXNDC5 (M12.15). Such a signa-
ture was previously found to be increased in response 
to vaccination at day 7 post administration, to correlate 
with the prevalence of antibody producing cells, and the 
development of antibody titers at day 28 [22]. (4) TLR8 
in A35/S1 (inflammation), encodes toll-like receptor 8. 

Table 4  Preliminary targeted panel—immunology relevance focus

Module set Module ID NCBI
Entrez ID

Symbol Name Module set functional annotation

A1/S1 M15.38 916 CD3E CD3e molecule T cells

A1/S2 M14.49 974 CD79B CD79b molecule Gene transcription

A1/S3 M14.80 3122 HLA-DRA Major histocompatibility complex, class II, DR alpha B cells

A2/S1 M9.1 3002 GZMB Granzyme B Cytotoxic lymphocytes

A2/S2 M13.13 4282 MIF Macrophage migration inhibitory factor TBD

A4/S1 M16.77 3811 KIR3DL1 Killer cell immunoglobulin like receptor, three Ig 
domains and long cytoplasmic tail 1

Antigen presentation

A5/S1 M16.95 972 CD74 CD74 molecule B cells

A5/S2 M16.111 27242 TNFRSF21 TNF receptor superfamily member 21 B cells

A7/S1 M15.61 23166 STAB 1 Stabilin 1 Monocytes

A8/S1 M16.30 3600 IL15 Interleukin 15 Complement

A8/S2 M16.106 57823 SLAMF7 SLAM family member 7 TBD

A10/S1 M15.102 246 ALOX15 Arachidonate 15-lipoxygenase Prostanoids

A26/S1 M12.2 942 CD86 CD86 molecule Monocytes

A27/S1 M12.15 608 CD38 CD38 molecule Cell cycle

A28/S1 M8.3 9636 ISG15 ISG15 ubiquitin like modifier Interferon response

A28/S2 M15.64 10475 TRIM38 Tripartite motif containing 38 Interferon response

A28/S3 M10.1 115362 GBP5 Guanylate binding protein 5 Interferon response

A31/S1 M16.64 1950 EGF Epidermal growth factor Platelet/prostaglandin

A31/S2 M15.58 2214 FCGR3A Fc fragment of IgG receptor IIIa Monocytes

A33/S1 M14.24 91 ACVR1B Activin A receptor type 1B Cytokines/chemokines, Inflammation

A33/S2 M14.19 23765 IL17RA Interleukin 17 receptor A Inflammation

A34/S1 M8.2 3674 ITGA2B Integrin subunit alpha 2b Platelets, prostanoids

A35/S1 M13.3 1241 LTB4R Leukotriene B4 receptor Inflammation

A35/S2 M12.10 51311 TLR8 Toll like receptor 8 Neutrophils, inflammation

A36/S1 M16.34 2993 GYPA Glycophorin A (MNS blood group) Gene transcription

A37/S1 M11.3 2623 GATA1 GATA binding protein 1 Erythroid cells

A38/S1 M10.4 4057 LTF Lactotransferrin Neutrophil activation

A38/S2 M16.96 56729 RETN Resistin Erythroid cells
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Expression of transcripts comprising this aggregate is 
generally restricted to neutrophils and robustly increased 
during sepsis (e.g. as we have described in detail earlier 
for ACSL1, another transcript belonging to this aggre-
gate [23]). (5) GZMB in A2/S1 (Cytotoxic cells) encodes 
Granzyme B, a serine protease known to play a role in 
immune-mediated cytotoxicity. Other transcripts form-
ing this panel are listed in Table 4.

Even with the limited amount of data available to 
guide the selection in the previous steps, it is reasonable 
to assume that such a panel (while not optimal) would 
already provide valid information for Covid-19 immune 
profiling. Additional Covid-19 blood transcriptome data 
that will become available in the coming weeks will allow 
us to refine the overall selection process.

Design of a preliminary targeted panel emphasizing 
therapeutic relevance
A different translational connotation was given for this 
second panel. Here, we based the selection on the same 
collection of 28 module sets. However, this time, when-
ever possible, we included transcripts that could have 
value as targets for the treatment of Covid-19 patients. 
An initial screen identified 82 transcripts encoding mol-
ecules that are known targets for existing drugs (see 
“Methods”). We further prioritized these candidates 
based on an expert’s evaluation of the compatibility of 
use of the drugs for treating Covid-19 patients. As an 
exception, module sets belonging to A28 (interferon 
response) were selected based on their suitability as 
markers of a response to interferon therapy (as described 
in “Methods” and illustrated in Fig. 5). Sets for which no 
targets of clinical relevance were identified (16/28) were 
instead represented in the panel by immunologically-
relevant transcripts (defined earlier). Indeed, while it is 
possible to customize panels according to preference or 
needs, it would be optimal for any such custom targeted 
panel to maintain coverage across the entire breadth of 
Covid-19 signatures (i.e. the 28 homogenous Covid-19 
module sets).

We ultimately identified a preliminary set of 12 targets 
through this high stringency selection process (Table 5). 
Developing effective immune modulation therapies in 
critical care settings has proven challenging [24]. Current 
efforts in the context of Covid-19 disease particularly aim 
at controlling runaway systemic immune responses or so 
called “cytokine storms” that have been associated with 
organ damage and clinical worsening. Targets of interest 
identified among our gene set include: (1) IL6R in A35/
S2 (inflammation), encoding the Interleukin-6 Recep-
tor, which is a target for the biologic drug Tocilizumab. 
Several studies have tested this antagonist in open label 
single arm trials in Covid-19 patients with the intent 

of blocking the cytokine storm associated with severe 
Covid-19 infection [25, 26]. (2) CCR2 in A26/1 (mono-
cytes), encoding the chemokine (C–C motif ) receptor 
2, is targeted along with CCR5 by the drug Cenicriviroc. 
This drug exerts potent anti-inflammatory activity [27]. 
(3) TBXA2R in A31/1 (platelets), encoding the Throm-
boxane receptor, is targeted by several drugs with anti-
platelet aggregation properties [28]. (4) PDE8A in A33/
S1 (inflammation), encoding Phosphodiesterase 8A, is 
targeted by Pentoxifylline, a non-selective phosphodies-
terase inhibitor that increases perfusion and may reduce 
risk of acute kidney injury and attenuates LPS-induced 
inflammation [29]. (5) NQO1 in A8/S1 (Complement), 
encoding NAD(P)H quinone dehydrogenase 1. The 
NQO1 antagonist Vatiquinone (EPI-743) has been found 
to inhibit ferroptosis [30], a process associated with tis-
sue injury [31], including in sepsis [32]. A complete list is 
provided in Table 5.

The fact that this transcript panel and the previous sur-
vey the same pre-defined 28 homogenous Covid-19 rel-
evant module sets should make them largely synonymous 
(since modules are formed on the basis of co-expression). 
Nevertheless, this second panel may be more relevant for 
investigators interested in investigating new therapeutic 
approaches or measuring responses to treatment.

Design of a preliminary targeted panel of blood transcripts 
of relevance for SARS‑CoV‑2 biology
For the third panel designed in this proof of principle, we 
primarily selected transcripts based on their relevance to 
SARS biology. As a first step, we used a literature profil-
ing tool to identify SARS, MERS, or Covid-19 literature 
articles that were associated with transcripts forming 
the 28 Covid-19 module sets. Next, the potential asso-
ciations were subjected to expert curation (see “Meth-
ods”). Once again, to keep redundancies to a minimum, 
we only included one candidate per set in this panel 
(Table  6). Notable examples include: (1) LTF in A38/S1 
(Neutrophil activation), encoding Lactotransferrin, that 
is known to block the binding of the SARS-CoV spike 
protein to host cells, thus exerting an inhibitory function 
at the viral attachment stage [33]. (2) FURIN in A37/S1 
(Erythroid cells), encodes a proprotein convertase that 
preactivates SARS-CoV-2, thus reducing its dependence 
on target cell proteases for entry [34]. (3) EGR1 in A7/S1 
(Monocytes), encoding Early Growth Response 1, which 
upon induction by SARS Coronavirus Papain-Like Pro-
tease mediates up-Regulation of TGF-β1 [35]. (4) STAT1 
in A28/S3 (Interferon response), encoding a transcrip-
tion factor known to play an important role in the induc-
tion of antiviral effector responses. It was reported that 
SARS ORF6 antagonizes STAT1 function by preventing 
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Fig. 5  Changes in abundance of transcripts comprising aggregate A28 in response to SARS-CoV-2 infection. The heatmaps display the changes 
in transcript abundance in three Covid-19 patients comprising the Xiong et al. RNA-seq transcriptome dataset. The top heatmap summarizes the 
module-level values for the six modules forming aggregate A28. The color code indicates membership to one of the three Covid-19 module sets 
that were defined earlier. The bottom heatmap shows patterns of abundance for the same six modules, but at the individual gene level. The line 
graphs on the right show changes in abundance for three transcripts from the “therapeutic relevance panel” in three Covid-19 patients profiled by 
Ong et al. using a generic Nanostring immune set comprising 594 transcripts
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Table 5  Preliminary targeted panel—therapeutic relevance focus

Module set Module ID NCBI
Entrez ID

Symbol Name Relevance Notes

A1/S1 M15.38 916 CD3E CD3e molecule Immunological Not suitable for targeting (adaptive 
immunity)

A1/S2 M14.49 974 CD79B CD79b molecule Immunological Not suitable for targeting (adaptive 
immunity)

A1/S3 M14.80 3122 HLA-DRA Major histocompatibility complex, class 
II, DR alpha

Immunological Not suitable for targeting (adaptive 
immunity)

A2/S1 M9.1 3002 GZMB Granzyme B Immunological Not suitable for targeting (adaptive 
immunity)

A2/S2 M13.13 4282 MIF Macrophage migration inhibitory factor Immunological Not suitable for targeting (adaptive 
immunity -presumed)

A4/S1 M16.77 3811 KIR3DL1 Killer cell immunoglobulin like receptor, 
three Ig domains and long cytoplas‑
mic tail 1

Immunological Not suitable for targeting (adaptive 
immunity)

A5/S1 M16.95 972 CD74 CD74 molecule Immunological Not suitable for targeting (adaptive 
immunity)

A5/S2 M16.111 27242 TNFRSF21 TNF receptor superfamily member 21 Immunological Not suitable for targeting (adaptive 
immunity)

A7/S1 M15.61 23166 STAB 1 Stabilin 1 Immunological No suitable candidates identified

A8/S1 M16.30 1728 NQO1 NAD(P)H quinone dehydrogenase 1 Therapeutic Vatiquinone (EPI-743) has been found to 
inhibit ferroptosis [30], a process associ‑
ated with tissue injury [31], including in 
sepsis [32]

A8/S2 M16.106 57823 SLAMF7 SLAM family member 7 Immunological No suitable candidates identified

A10/S1 M15.102 246 ALOX15 Arachidonate 15-lipoxygenase Immunological No suitable candidates identified

A26/S1 M12.2 729230 CCR2 C–C motif chemokine receptor 2 Therapeutic Anti-inflammatory properties have been 
attributed to the CCR2/CCR5 blocker 
Cenicriviroc [53]

A27/S1 M12.15 608 TNFRSF17 TNF receptor superfamily member 17 Immunological Not suitable for targeting (adaptive 
immunity)

A28/S1 M8.3 4599 MX1 MX dynamin like GTPase 1 Therapeutic Inducible by Interferon-beta treatment

A28/S2 M15.64 1230 CCR1 C–C motif chemokine receptor 1 Therapeutic Inducible by Interferon-beta treatment

A28/S3 M10.1 3433 IFIT2 Interferon induced protein with tetratri‑
copeptide repeats 2

Therapeutic Inducible by Interferon-beta treatment

A31/S1 M16.64 6915 TBXA2R Thromboxane A2 receptor Therapeutic Thromboxane A2 synthase inhibitors 
have antiplatelet aggregation activi‑
ties and anti-inflammatory activities 
(drugs include: Defibrotide/Seratrodast, 
Ozagrel)

A31/S2 M15.58 5743 PTGS2 Prostaglandin-endoperoxide synthase 
2

Therapeutic PTGS2 encodes COX-2. Several specific 
inhibitors are available which possess 
anti-inflammatory properties (e.g. 
celecoxib, rofecoxib, valdecoxib)

A33/S1 M15.104 5151 PDE8A Phosphodiesterase 8A Therapeutic PDE8A, is targeted by Pentoxifylline, 
a non-selective phosphodiesterase 
inhibitor that increases perfusion and 
may reduce risk of acute kidney injury 
and attenuates LPS-induced inflam‑
mation

A33/S2 M14.19 23765 IL17RA Interleukin 17 receptor A Therapeutic Brodalumab may be beneficial in reduc‑
ing the viral illness exacerbation. But 
current recommendation is discontinu‑
ation of use in COVID 19

A34/S1 M16.109 5742 PTGS1 Prostaglandin-endoperoxide synthase 
1

Therapeutic Encodes for Cox-1. COX inhibitors includ‑
ing Aspirin, Indomethacin, Naproxen 
have direct antiviral properties as well 
as anti-inflammatory and antithrom‑
botic properties
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its translocation to the nucleus and acts as an interferon 
antagonist in the context of SARS-CoV infection [36].

This screen identified several molecules that may be 
of importance for SARS-CoV-2 entry and replication. A 
complete list is provided in Table  6. It is expected that 
this knowledge will evolve rapidly over time and periodic 
updates may be necessary. And, as for the previous two 
panels, investigators may also have an interest in includ-
ing more than one candidate per module set. This of 
course would also be feasible, although at the expense of 
course of parsimony.

Development of an annotation framework in support 
of signatures curation efforts
A vast amount of information is available to support the 
work of expert curators who are responsible for finalizing 
the selection of candidates. This process often requires 
accessing a number of different resources (e.g. those 
listed in Table 3). Here we have built upon earlier efforts 
to aggregate this information in a manner that makes it 
seamlessly accessible by the curators.

As proof of principle, we created dedicated, interactive 
presentations in Prezi for module aggregates A28 (https​
://prezi​.com/view/7lbgG​wfiNf​lffqQ​zvL14​/) and A31 
(https​://prezi​.com/view/zYCSL​yo0nv​JTwjf​JkJqb​/). These 
presentations are intended, on the one hand, to aggregate 
contextual information that can serve as a basis for data 
interpretation. On the other hand, they are intended to 
capture the results of the interpretative efforts of expert 
curators.

The interactive presentations are organized in sections, 
each showing aggregated information from a different 

level: module-sets, modules and transcripts (Fig.  6). 
The information derived from multiple online sources, 
including both third party applications and custom appli-
cations developed by our team (Table  3). Among those 
is a web application developed specifically for this work, 
which was used to generate the Covid-19 plots from Ong 
et al. and Xiong et al. (Figure 6a). The interactive presen-
tation itself permits to zoom in and out, determine spa-
tial relationships and interactively browse the very large 
compendium of analysis reports and heatmaps generated 
as part of these annotation efforts (Fig. 6b). The last sec-
tion that contains transcript-centric information, is also 
the area where interpretations from individual curators 
can be aggregated (Fig. 6c).

We have annotated and interpreted some of the tran-
scripts included in A31/S1 in such a manner: (1) OXTR, 
which encodes for the Oxytocin receptor through which 
anti-inflammatory and wound healing properties of Oxy-
tocin are mediated [37]. Among our reference cohort 
datasets, OXTR is most highly increased in patients 
with S. aureus infection or active pulmonary tuberculo-
sis [7]. (2) CD9, which encodes a member of the tetras-
panin family, facilitates the condensation of receptors 
and proteases activating MERS-CoV and promoting its 
rapid and efficient entry into host cells [38]. (3) TNFSF4, 
which encodes for OX40L and is a member of the TNF 
superfamily. Although OX40L is best known as a T-cell 
co-stimulatory molecule, reports have also shown that it 
is present on the neutrophil surface [39]. Furthermore, 
OX40L blockade improved outcomes of sepsis in an ani-
mal model.

Table 5  (continued)

Module set Module ID NCBI
Entrez ID

Symbol Name Relevance Notes

A35/S1 M14.7 5293 JAK2 Janus kinase 2 Therapeutic A targeted for the biologic drug Rux‑
olitinib. Ruxolitinib acts on cellular 
components of both innate and adap‑
tive immunity inhibiting downstream 
cellular signaling pathways of major 
inflammatory mediators (e.g., IFN-alpha 
via JAK2, and IL-2 and IL-6 via JAK1)

A35/S2 M15.109 3570 IL6R Interleukin 6 receptor Therapeutic IL6R is a target for the biologic drug Toci‑
lizumab. Several studies have tested 
this antagonist in open label single 
arm trials in Covid-19 patients with the 
intent of blocking the cytokine storm 
associated with Covid-19 disease [15, 
16]

A36/S1 M16.34 2993 GYPA Glycophorin A (MNS blood group) Immunological Not suitable for targeting (erythropoiesis)

A37/S1 M11.3 2623 GATA1 GATA binding protein 1 Immunological Not suitable for targeting (erythropoiesis)

A38/S1 M10.4 4057 LTF Lactotransferrin Immunological No suitable candidates identified

A38/S2 M16.96 56729 RETN Resistin Immunological Not suitable for targeting (erythropoiesis)

https://prezi.com/view/7lbgGwfiNflffqQzvL14/
https://prezi.com/view/7lbgGwfiNflffqQzvL14/
https://prezi.com/view/zYCSLyo0nvJTwjfJkJqb/
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Table 6  Preliminary targeted panel—SARS biology relevance focus

Module set Module ID NCBI
Entrez ID

Symbol Name Relevance Notes

A1/S1 M15.38 916 CD3E CD3e molecule Immunological

A1/S2 M12.1 60489 APOBEC3G apolipoprotein B mRNA editing 
enzyme catalytic subunit 3G

CoV Biology APOBEC3G associates with SARS viral 
structural proteins [54], with a possible 
role in restriction of RNA virus replica‑
tion [55]

A1/S3 M14.64 51284 TLR7 Toll like receptor 7 CoV Biology TLR7 Signaling Pathway is inhibited by 
SARS Coronavirus Papain-Like Protease 
[35]

A2/S1 M13.21 3458 IFNG Interferon gamma CoV Biology Interferon-gamma and interleukin-4 
Downregulate Expression of the SARS 
Coronavirus Receptor ACE2 [56]

A2/S2 M13.10 25 ABL1 ABL proto-oncogene 1, non-receptor 
tyrosine kinase

CoV Biology Abl Kinase inhibitors block SARS-Cov 
fusion [57]

A4/S1 M16.77 3811 KIR3DL1 killer cell immunoglobulin like recep‑
tor, three Ig domains and long 
cytoplasmic tail 1

Immunological The inhibitory KIR3DL1 is a strong ligand 
for HLA Bw4, C1 and C2 groups. High 
expression of this inhibitory KIR was 
associated with slower disease pro‑
gress to AIDS and better HIV viral load 
control [58]

A5/S1 M16.65 4092 SMAD7 SMAD family member 7 CoV Biology MERS Coronavirus Induces Apoptosis 
in Kidney and Lung by Upregulating 
Smad7 and FGF2 [59]

A5/S2 M16.111 27242 TNFRSF21 TNF receptor superfamily member 21 Immunological

A7/S1 M15.61 1958 EGR1 Early growth response 1 CoV Biology SARS Coronavirus Papain-Like Protease 
Induces Egr-1-dependent Up-Regula‑
tion of TGF-β1 [60]

A8/S1 M16.30 857 CAV1 Caveolin 1 CoV Biology Severe Acute Respiratory Syndrome 
Coronavirus Orf3a Protein Interacts 
with Caveolin [61]

A8/S2 M16.106 57823 SLAMF7 SLAM family member 7 Immunological

A10/S1 M15.102 246 ALOX15 arachidonate 15-lipoxygenase Immunological

A26/S1 M12.2 942 CD86 CD86 molecule Immunological

A27/S1 M12.15 608 TNFRSF17 TNF receptor superfamily member 17 Immunological

A28/S1 M8.3 9636 ISG15 ISG15 ubiquitin like modifier CoV Biology SARS-CoV PLpro exhibits ISG15 precur‑
sor processing activities [62]

A28/S2 M15.64 1230 CCR1 C–C motif chemokine receptor 1 CoV Biology MLN-3897, a CCR1 antagonist inhibits 
replication of SARS-CoV-2 replication 
[63]

A28/S3 M10.1 6772 STAT1 Signal transducer and activator of 
transcription 1

CoV Biology SARS ORF6 Antagonizes STAT1 Function 
[36]

A31/S1 M16.64 1950 EGF Epidermal growth factor Immunological

A31/S2 M15.58 5743 PTGS2 Prostaglandin-endoperoxide synthase 
2

CoV Biology Encodes COX2, which expression is 
stimulated by SARS Spike protein [64]

A33/S1 M14.24 114548 NLRP3 NLR family pyrin domain containing 3 CoV Biology Multiple SARS-Coronavirus protein have 
been reported to activates NLRP3 
inflammasomes [65, 66]

A33/S2 M14.19 23765 IL17RA Interleukin 17 receptor A Immunological

A34/S1 M8.2 3674 ITGA2B Integrin subunit alpha 2b Immunological

A35/S1 M13.3 1241 LTB4R Leukotriene B4 receptor Immunological

A35/S2 M15.78 290 ANPEP alanyl aminopeptidase, membrane CoV Biology A potential receptor for human CoVs 
[67]

A36/S1 M16.88 6352 CCL5 C–C motif chemokine ligand 5 CoV Biology CCL5/RANTES is associated with the 
replication of SARS in THP-1 Cells [68]

A37/S1 M13.26 5045 FURIN Furin, paired basic amino acid cleaving 
enzyme

CoV Biology Furin cleavage of the SARS coronavirus 
spike glycoprotein enhances cell–cell 
fusion [69]
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Our interpretation efforts have been limited thus far by 
expediency. Certainly, interpretation will be the object of 
future, more targeted efforts. In the meantime, this anno-
tation framework supports the selection of candidates 
forming the panels presented here. It may also serve as 
a resource for investigators who wish to design custom 
panels of their own.

Discussion
Early reports point to profound immunological changes 
occurring during the course of SARS-CoV-2 infection 
[40, 41]. In particular, patterns of immune dysfunction 
have been associated with rapid worsening of symptoms 
and the onset of severe respiratory failure [42]. However, 
disease outcomes remain highly heterogeneous and fac-
tors contributing to clinical deterioration are poorly 
understood. Among other modalities, means to enhance 
immune monitoring capabilities in cohorts of Covid-19 
patients are needed. Here we designed an approach to 
select and curate targeted blood transcript panels rel-
evant to Covid-19 disease.

The sparsity of the Covid-19 blood transcriptome data 
available to guide the selection process described in 
this paper was an obvious limitation. Xiong et  al. data-
set comprised profiles of only three Covid-19 subjects 
and one uninfected control subject. More transcriptome 
profiling data will be generated and become available 

in the coming weeks and months, including from our 
group. This will permit to re-iterate the selection process 
and refine the design of the preliminary versions of the 
three Covid-19 transcript panels being presented here. 
Additional Covid-19 data would likely permit to adjust 
the filtering of module aggregates (Fig. 1b) and improve 
the delineation of Covid-19 module sets (Fig. 1c). How-
ever, the generic module repertoire that serves as the 
main framework for candidate selection would remain 
unchanged (Fig.  1a). Likewise, knowledge-driven pri-
oritization of candidates based on relevance to therapy, 
immunology or SARS biology is by definition independ-
ent from Covid-19 profiling data availability (Fig.  1d). 
Therefore, while changes to the preliminary panels pre-
sented in Tables  3, 5 and 6 resulting from additional 
Covid-19 profiling data becoming available are to be 
expected those may not prove to be extensive.

The targeted panel design approach that we are pre-
senting is also partly knowledge-driven. Indeed, we have 
relied on expert knowledge for the identification of tran-
scripts coding for molecules with biological significance 
or therapeutic relevance, specifically in the context of 
Covid-19 disease (Fig. 1d). While it was possible to enroll 
the help of several curators to work in parallel on this task 
the amount of time allotted was limited by the need for 
expediency. Curation of candidates is therefore another 
area that will be worth revisiting over the coming weeks 

Table 6  (continued)

Module set Module ID NCBI
Entrez ID

Symbol Name Relevance Notes

A38/S1 M10.4 4057 LTF Lactotransferrin CoV Biology Lactotransferrin blocks the binding of 
the SARS-CoV spike protein to host 
cells, thus exerting an inhibitory func‑
tion at the viral attachment stage [33]

A38/S2 M12.9 1508 CTSB Cathepsin B CoV Biology Activation of SARS- and MERS-coronavi‑
rus is mediated cathepsin L (CTSL) and 
cathepsin B (CTSB) [70]

(See figure on next page.)
Fig. 6  High resolution annotation framework supporting the curation and interpretation of Covid-19 module sets. This series of screenshots shows 
the content of the interactive presentations that have been established to provide curators with access to detailed annotations regarding modules 
forming a given aggregate, its constitutive modules and targets that have been selected for inclusion in transcript panels. Links to interactive 
presentations and resources mentioned below are available in Table 3. a Module aggregate-level information. This section displays patterns of 
transcript abundance across the modules forming a given aggregate, as well as the degree of association of this aggregate with the severity of 
RSV disease. Plots used to populate this section were generated using three web applications, including one that was developed in support of 
this work that compiles the Covid-19 blood transcriptional data available to date. The other two applications were developed as part of a previous 
study to generate plots for the reference disease cohorts and RSV severity association plots [47]. b Module-level information. This section includes, 
for a given module, reports from functional profiling tools as well as patterns of transcript abundance across the genes forming the module. Drug 
targeting profiles were added to provide another level of information. c Gene-centric information. The information includes curated pathways 
from the literature, articles and reports from public resources. Gene-centric transcriptional profiles that are available via gene expression browsing 
applications deployed by our group are also captured and used for context (GXB). A synthesis of the information gathered by expert curation and 
potential relevance to SARS-Cov-2 infection can also be captured and presented here
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and months as targeted blood transcript panels are fur-
ther refined. It is also an effort that the platform we have 
developed for the aggregation of vast amounts of infor-
mation from various sources would help support. This 
will become especially important now that an increasing 
number of bioinformatics tools and resources are being 
made available by the scientific community for tackling 
the current health crisis (e.g. more specifically for drug 
target identification and repurposing: [43, 44]).

In the illustrative use cases that we are providing non-
synonymous targeted panels were formed by select-
ing only one representative transcript from each of the 
28 homogenous Covid-19 module sets. It is neverthe-
less possible to devise custom selection strategies where 
more than one transcript is retained from each set. Our 
own implementation of a preliminary targeted Covid-19 
blood transcriptional assay will be based on the Fluid-
igm Biomark high throughput PCR platform. The panel 
will comprise 96 targets in order to comply with the for-
mat of Fluidigm’s integrated fluidics circuits (96 sam-
ples × 96 reactions). These will include all transcripts 
listed in Tables 4, 5 and 6 (53 unique transcripts) which 
will be complemented by 35 additional candidates which 
received priority ranking from our expert curators and 
8 housekeeping genes. While the number of candidates 
to be selected within a given module set remains flexible 
our recommendation when designing such a targeted 
panel would be for all 28 module sets to be covered by at 
least one transcript. Additional file 3 includes the list of 
the genes included in the modules forming the 28 Covid-
19 module sets. Other medium-throughput technology 
platforms, such as the Nanostring nCounter System or 
ThermoFisher Openarray, would also be appropriate for 
implementing custom profiling assays with the number of 
targets comprising the preliminary panels presented here 
(or a combination thereof ). Downsizing panels to com-
prise ± 10 key markers might serve as a basis for imple-
mentation on more ubiquitous real-time PCR platforms.

Monitoring of “immune trajectories” associated with 
response to SARS-CoV-2 infection and clinical deterio-
ration of Covid-19 patients is one possible application 
for such a targeted assay. Another would be the meas-
urement of responses to therapy (as part of standard of 
care or a trial). The immune profiling of asymptomatic 
or pre-symptomatic patients (e.g. quarantined) would be 
another setting where implementation of such an assay 
could prove useful. For this, it would for instance be pos-
sible to use protocols that we have previously developed 
for home-based, self-sampling and blood RNA stabiliza-
tion [45, 46].

Conclusions
Overall, this work lays the ground for a framework 
designed to support the development of interpretable 
targeted panels for profiling immune responses to SARS-
CoV-2 infection. It consists, on one hand, in an analytic 
pipeline for data-driven selection of targets. And, on 
the other hand, in an information aggregation platform 
supporting the work of expert curators. The preliminary 
blood transcript panels presented here will be leveraged 
for a first round of implementation of a targeted Covid-
19 immune profiling assay.
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